Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 18.455
Filtrar
1.
Sci Rep ; 14(1): 7784, 2024 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-38565553

RESUMEN

In Iran, native oak species are under threat from episodes of Charcoal Disease, a decline syndrome driven by abiotic stressors (e.g. drought, elevated temperature) and biotic components, Biscogniauxia mediterranea (De Not.) Kuntze and Obolarina persica (M. Mirabolfathy). The outbreak is still ongoing and the country's largest ever recorded. Still, the factors driving its' epidemiology in time and space are poorly known and such knowledge is urgently needed to develop strategies to counteract the adverse effects. In this study, we developed a generic framework based on experimental, machine-learning algorithms and spatial analyses for landscape-level prediction of oak charcoal disease outbreaks. Extensive field surveys were conducted during 2013-2015 in eight provinces (more than 50 unique counties) in the Zagros ecoregion. Pathogenic fungi were isolated and characterized through morphological and molecular approaches, and their pathogenicity was assessed under controlled water stress regimes in the greenhouse. Further, we evaluated a set of 29 bioclimatic, environmental, and host layers in modeling for disease incidence data using four well-known machine learning algorithms including the Generalized Linear Model, Gradient Boosting Model, Random Forest model (RF), and Multivariate Adaptive Regression Splines implemented in MaxEnt software. Model validation statistics [Area Under the Curve (AUC), True Skill Statistics (TSS)], and Kappa index were used to evaluate the accuracy of each model. Models with a TSS above 0.65 were used to prepare an ensemble model. The results showed that among the different climate variables, precipitation and temperature (Bio18, Bio7, Bio8, and bio9) in the case of O. persica and similarly, gsl (growing season length TREELIM, highlighting the warming climate and the endophytic/pathogenic nature of the fungus) and precipitation in case of B. mediterranea are the most important influencing variables in disease modeling, while near-surface wind speed (sfcwind) is the least important variant. The RF algorithm generates the most robust predictions (ROC of 0.95; TSS of 0.77 and 0.79 for MP and OP, respectively). Theoretical analysis shows that the ensemble model (ROC of 0.95 and 0.96; TSS = 0.79 and 0.81 for MP and OP, respectively), can efficiently be used in the prediction of the charcoal disease spatiotemporal distribution. The oak mortality varied ranging from 2 to 14%. Wood-boring beetles association with diseased trees was determined at 20%. Results showed that water deficiency is a crucial component of the oak decline phenomenon in Iran. The Northern Zagros forests (Ilam, Lorestan, and Kermanshah provinces) along with the southern Zagros forests (Fars and Kohgilouyeh va-Boyer Ahmad provinces) among others are the most endangered areas of potential future pandemics of charcoal disease. Our findings will significantly improve our understanding of the current situation of the disease to pave the way against pathogenic agents in Iran.


Asunto(s)
Ascomicetos , Quercus , Quercus/microbiología , Carbón Orgánico , Irán/epidemiología
2.
Sci Rep ; 14(1): 7752, 2024 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-38565858

RESUMEN

Understanding the impact of greenhouse gas (GHG) emissions and carbon stock is crucial for effective climate change assessment and agroecosystem management. However, little is known about the effects of organic amendments on GHG emissions and dynamic changes in carbon stocks in salt-affected soils. We conducted a pot experiment with four treatments including control (only fertilizers addition), biochar, vermicompost, and compost on non-saline and salt-affected soils, with the application on a carbon equivalent basis under wheat crop production. Our results revealed that the addition of vermicompost significantly increased soil organic carbon content by 18% in non-saline soil and 52% in salt-affected soil compared to the control leading to improvements in crop productivity i.e., plant dry biomass production by 57% in non-saline soil with vermicompost, while 56% with the same treatment in salt-affected soil. The grain yield was also noted 44 and 50% more with vermicompost treatment in non-saline and salt-affected soil, respectively. Chlorophyll contents were observed maximum with vermicompost in non-saline (24%), and salt-affected soils (22%) with same treatments. Photosynthetic rate (47% and 53%), stomatal conductance (60% and 12%), and relative water contents (38% and 27%) were also noted maximum with the same treatment in non-saline and salt-affected soils, respectively. However, the highest carbon dioxide emissions were observed in vermicompost- and compost-treated soils, leading to an increase in emissions of 46% in non-saline soil and 74% in salt-affected soil compared to the control. The compost treatment resulted in the highest nitrous oxide emissions, with an increase of 57% in non-saline soil and 62% in salt-affected soil compared to the control. In saline and non-saline soils treated with vermicompost, the global warming potential was recorded as 267% and 81% more than the control, respectively. All treatments, except biochar in non-saline soil, showed increased net GHG emissions due to organic amendment application. However, biochar reduced net emissions by 12% in non-saline soil. The application of organic amendments increased soil organic carbon content and crop yield in both non-saline and salt-affected soils. In conclusion, biochar is most effective among all tested organic amendments at increasing soil organic carbon content in both non-saline and salt-affected soils, which could have potential benefits for soil health and crop production.


Asunto(s)
Compostaje , Gases de Efecto Invernadero , Suelo , Agricultura/métodos , Triticum , Carbono , Carbón Orgánico , Cloruro de Sodio , Cloruro de Sodio Dietético , Óxido Nitroso/análisis , Dióxido de Carbono/análisis
3.
Environ Monit Assess ; 196(5): 423, 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38570374

RESUMEN

Mobile herbicides have a high potential for groundwater contamination. An alternative to decrease the mobility of herbicides is to apply materials with high sorbent capacity to the soil, such as biochars. The objective of this research was to evaluate the effect of eucalyptus, rice hull, and native bamboo biochar amendments on sorption and desorption of hexazinone, metribuzin, and quinclorac in a tropical soil. The sorption-desorption was evaluated using the batch equilibrium method at five concentrations of hexazinone, metribuzin, and quinclorac. Soil was amended with eucalyptus, rice hull, and native bamboo biochar at a rate of 0 (control-unamended) and 1% (w w-1), corresponding to 0 and 12 t ha-1, respectively. The amount of sorbed herbicides in the unamended soil followed the decreasing order: quinclorac (65.9%) > metribuzin (21.4%) > hexazinone (16.0%). Native bamboo biochar provided the highest sorption compared to rice hull and eucalyptus biochar-amended soils for the three herbicides. The amount of desorbed herbicides in the unamended soil followed the decreasing order: metribuzin (18.35%) > hexazinone (15.9%) > quinclorac (15.1%). Addition of native bamboo biochar provided the lowest desorption among the biochar amendments for the three herbicides. In conclusion, the biochars differently affect the sorption and desorption of hexazinone, metribuzin, and quinclorac mobile herbicides in a tropical soil. The addition of eucalyptus, rice hull, and native bamboo biochars is a good alternative to increase the sorption of hexazinone, metribuzin, and quinclorac, thus, reducing mobility and availability of these herbicides to nontarget organisms in soil.


Asunto(s)
Eucalyptus , Herbicidas , Oryza , Quinolinas , Sasa , Contaminantes del Suelo , Triazinas , Carbón Orgánico , Suelo , Adsorción , Monitoreo del Ambiente , Herbicidas/análisis , Contaminantes del Suelo/análisis
4.
Environ Monit Assess ; 196(5): 425, 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38573498

RESUMEN

The remediation of polluted soil and water stands as a paramount task in safeguarding environmental sustainability and ensuring a dependable water source. Biochar, celebrated for its capacity to enhance soil quality, stimulate plant growth, and adsorb a wide spectrum of contaminants, including organic and inorganic pollutants, within constructed wetlands, emerges as a promising solution. This review article is dedicated to examining the effects of biochar amendments on the efficiency of wastewater purification within constructed wetlands. This comprehensive review entails an extensive investigation of biochar's feedstock selection, production processes, characterization methods, and its application within constructed wetlands. It also encompasses an exploration of the design criteria necessary for the integration of biochar into constructed wetland systems. Moreover, a comprehensive analysis of recent research findings pertains to the role of biochar-based wetlands in the removal of both organic and inorganic pollutants. The principal objectives of this review are to provide novel and thorough perspectives on the conceptualization and implementation of biochar-based constructed wetlands for the treatment of organic and inorganic pollutants. Additionally, it seeks to identify potential directions for future research and application while addressing prevailing gaps in knowledge and limitations. Furthermore, the study delves into the potential limitations and risks associated with employing biochar in environmental remediation. Nevertheless, it is crucial to highlight that there is a significant paucity of data regarding the influence of biochar on the efficiency of wastewater treatment in constructed wetlands, with particular regard to its impact on the removal of both organic and inorganic pollutants.


Asunto(s)
Carbón Orgánico , Contaminantes Ambientales , Humedales , Monitoreo del Ambiente , Biodegradación Ambiental , Suelo , Agua
5.
Artículo en Inglés | MEDLINE | ID: mdl-38571317

RESUMEN

Two cost-effective packing materials were used for n-butyl acetate removal in lab-scale biofilters, namely waste spruce root wood chips and biochar obtained as a byproduct from a wood gasifier. Three biofilters packed with spruce root wood chips: without biochar (SRWC), a similar one with 10% of biochar (SRWC-B) and that with 10% of biochar impregnated with a nitrogen fertilizer (SRWC-IB) showed similar yet differing maximum elimination capacities of 206 ± 27, 275 ± 21 and 294 ± 20 g m-3 h-1, respectively, enabling high pollutant removal efficiency (>95% at moderate loads) and stable performance. The original biochar adsorption capacity was high (208 ± 6 mgtoluene g-1), but near 70% of it was lost after a 300-day biofilter operation. By contrast, the exposed impregnated biochar drastically increased its adsorption capacity in 300 days (149 ± 7 vs. 17 ± 5 mgtoluene g-1). Colony forming unit (CFU) and microscopic analyses revealed significant packing material colonization by microorganisms and grazing fauna in all three biofilters with an acceptable pressure drop, up to 1020 Pa m-1, at the end of biofilter operation. Despite a higher price (14 vs. 123 €m-3), the application of the best performing SRWC-IB packing can reduce the total investment costs by 9% due to biofilter volume reduction.


Asunto(s)
Acetatos , Carbón Orgánico , Filtración , Tolueno , Biodegradación Ambiental
6.
J Environ Manage ; 357: 120738, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38574710

RESUMEN

The pyrolysis of mint stalks and lemon peels was performed to synthesize mint-stalks (MBC) and lemon-peels (LBC) derived biochars for adsorbing methylene blue (MB). The preparation, characterization, and application of MBC in adsorption have not been reported in the literature. MBC showed higher surface area and carbon content than that of LBC. The removal ratios of MB were 87.5% and 60% within 90 min for MBC and LBC, respectively at pH 7, temperature of 30oC, adsorbent dose of 0.5 g/L, and MB concentration of 5 mg/L. The optimal MBC dose was 1 g/L achieving a removal efficiency of 93.6% at pH 7, temperature of 30oC, contact time of 90 min, and initial dye concentration of 5.0 mg/L. The adsorption efficiency decreased from 98.6% to 31.33% by raising the dye concentration from 3.0 mg/L to 30 mg/L. Further, the increase of adsorbent dose to 10 g/L could achieve 94.2%, 90.3%, 87.6%, and 84.1% removal efficiencies of MB in the case of initial concentrations of 200 mg/L, 300 mg/L, 400 mg/L, and 500 mg/L, respectively. MBC showed high stability in adsorbing MB under five cycles, and the performed analyses after adsorption reaffirmed the stability of MBC. The adsorption mechanism indicated that the adsorption of MB molecules on the biochar's surface was mainly because of the electrostatic interaction, hydrogen bonding, and π-π stacking. Pseudo-second-order and Langmuir models could efficiently describe the adsorption of MB on the prepared biochar. The adsorption process is endothermic and spontaneous based on the adsorption thermodynamics. The proposed adsorption system is promising and can be implemented on a bigger scale. Moreover, the prepared biochar can be implemented in other applications such as photocatalysis, periodate, and persulfate activation-based advanced oxidation processes.


Asunto(s)
Azul de Metileno , Contaminantes Químicos del Agua , Azul de Metileno/química , Adsorción , Concentración de Iones de Hidrógeno , Carbón Orgánico/química , Termodinámica , Cinética
7.
J Environ Manage ; 357: 120610, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38581889

RESUMEN

Biochar has been widely used in soil amendment and environmental remediation. Polycyclic aromatic hydrocarbons (PAHs) could be produced in preparation of biochar, which may pose potential risks to the environment and human health. At present, most studies focus on the ecotoxicity potential of biochar, while there are few systematic reviews on the formation mechanisms and mitigation strategies of PAHs in biochar. Therefore, a systematical understanding of the distribution, formation mechanisms, risk assessment, and degradation approaches of PAHs in biochar is highly needed. In this paper, the distribution and content of the total and bioavailable PAHs in biochar are reviewed. Then the formation mechanisms, influencing factors, and potential risk assessment of PAHs in biochar are systematically explored. After that, the effective strategies to alleviate PAHs in biochar are summarized. Finally, suggestions and perspectives for future studies are proposed. This review provides a guide for reducing the formation of biochar-associated PAHs and their toxicity, which is beneficial for the development and large-scale safe use of environmentally friendly biochar.


Asunto(s)
Restauración y Remediación Ambiental , Hidrocarburos Policíclicos Aromáticos , Contaminantes del Suelo , Humanos , Contaminantes del Suelo/análisis , Carbón Orgánico , Suelo
8.
J Environ Manage ; 357: 120823, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38583380

RESUMEN

Fe(II) regeneration plays a crucial role in the electro-Fenton process, significantly influencing the rate of ·OH formation. In this study, a method is proposed to improve Fe(II) regeneration through N-doping aimed at enhancing the adsorption capacity of the activated carbon cathode for Fe(III). N-doping not only enriched the pore structure on the surface of activated carbon, providing numerous adsorption sites, but also significantly increased the adsorption energy for Fe(III). Among the types of nitrogen introduced, pyridine-N exhibited the most substantial enhancement effect, followed by pyrrole-N, while graphite-N showed a certain degree of inhibition. Furthermore, N-doping facilitated the adsorption of all forms of Fe(III) by activated carbon. The adsorption and electrosorption rates of the NAC-900 electrode for Fe(III) were 30.33% and 42.36%, respectively. Such modification markedly enhanced the Fe3+/Fe2+ cycle within the electro-Fenton system. The NAC-900 system demonstrated an impressive phenol degradation efficiency of 93.67%, alongside the lowest electricity consumption attributed to the effective "adsorption-reduction" synergy for Fe(III) on the NAC-900 electrode. Compared to the AC cathode electro-Fenton system, the degradation efficiency of the NAC-900 cathode electro-Fenton system at pH = levels ranging from 3 to 5 exceeded 90%; thus, extending the pH applicability of the electro-Fenton process. The degradation efficiency of phenol using the NAC-900 cathode electro-Fenton system in various water matrices approached 90%, indicating robust performance in real wastewater treatment scenarios. This research elucidates the impact of cathodic Fe(III) adsorption on Fe(II) regeneration within the electro-Fenton system, and clarifies the influence of different N- doping types on the cathodic adsorption of Fe(III).


Asunto(s)
Compuestos Férricos , Contaminantes Químicos del Agua , Adsorción , Contaminantes Químicos del Agua/química , Carbón Orgánico/química , Conservación de los Recursos Energéticos , Oxidación-Reducción , Electrodos , Fenol , Compuestos Ferrosos , Peróxido de Hidrógeno/química
9.
Sci Total Environ ; 926: 172172, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38575019

RESUMEN

To improve the retention and slow-release abilities of nitrogen (N) and phosphorus (P), an 82 %-purity struvite fertilizer (MAP-BC) was synthesized using magnesium-modified biochar and a solution with a 2:1 concentration ratio of NH4+ to PO43- at a pH of 8. Batch microscopic characterizations and soil column leaching experiments were conducted to study the retention and slow-release mechanisms and desorption kinetics of MAP-BC. The slow-release mechanism revealed that the dissolution rate of high-purity struvite was the dominant factor of NP slow release. The re-adsorption of NH4+ and PO43- by biochar and unconsumed MgO prolonged slow release. Mg2+ ionized by MgO could react with PO43- released from struvite to form Mg3(PO4)2. The internal biochar exhibited electrostatic attraction and pore restriction towards NH4+, while magnesium modification and nutrient loading formed a physical antioxidant barrier that ensured long-term release. The water diffusion experiment showed a higher cumulative release rate for PO43- compared to NH4+, whereas in soil column leaching, the trend was reversed, suggesting that soil's competitive adsorption facilitated the desorption of NH4+ from MAP-BC. During soil leaching, cumulative release rates of NH4+ and PO43- from chemical fertilizers were 3.55-3.62 times faster than those from MAP-BC. The dynamic test data for NH4+ and PO43- in MAP-BC fitted the Ritger-Peppas model best, predicting release periods of 163 days and 166 days, respectively. The leaching performances showed that MAP-BC reduced leaching solution volume by 5.58 % and significantly increased soil large aggregates content larger than 0.25 mm by 24.25 %. The soil nutrients retention and pH regulation by MAP-BC reduced leaching concentrations of NP. Furthermore, MAP-BC significantly enhanced plant growth, and it is more suitable as a NP source for long-term crops. Therefore, MAP-BC is expected to function as a long-term and slow-release fertilizer with the potential to minimize NP nutrient loss and replace part of quick-acting fertilizer.


Asunto(s)
Fertilizantes , Magnesio , Estruvita/química , Magnesio/química , Fertilizantes/análisis , Óxido de Magnesio , Fósforo/química , Carbón Orgánico/química , Suelo/química , Nitrógeno/análisis
10.
Environ Monit Assess ; 196(5): 449, 2024 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-38609694

RESUMEN

The work objective was to assess the ecological state of soils by changing the residual oil content and restoring catalase activity after remediation. The soils were selected in various ecosystems: a steppe of the Rostov Region (Haplic Chernozem), beech-hornbeam forests in the Republic of Adygea (Haplic Cambisols), and semi-desert of the Caspian province of the Republic of Kalmykia (Eutric Cambisols). Soil samples were polluted with oil at a concentration of 5% of the soil mass. After that, ameliorants (biochar, nitroammophoska, sodium humate, and Baikal EM-1) were introduced into the oil-contaminated soil. The catalase activity of Haplic Cambisols was stimulated only with the introduction of D2 biochar by 11% relative to the control, and in Haplic Chernozem, catalase was most stimulated with the addition of nitroammophoska D0.5 and D1 by 65% and 57% of the control, respectively. Nitroammophoska in all doses significantly stimulated the enzymatic activity, in Eutric Cambisols by four to six times compared to the control. The range of soil stability determined by catalase activity: Eutric Cambisols > Haplic Chernozem > Haplic Cambisols. Thus, it is most effective to apply biochar in doses of D and D2 and D0.5 and D nitroammophoska during the remediation of oil-contaminated Haplic Chernozem. For the remediation of Haplic Cambisols, it is effective to introduce biochar in dose of D2, and Eutric Cambisols-biochar and sodium humate in dose of D0.5 and nitroammophoska (all doses). The results of the study allow using catalase activity as a very informative and statistically significant diagnostical indicator of the health of oil-contaminated soils after remediation.


Asunto(s)
Carbón Orgánico , Ecosistema , Monitoreo del Ambiente , Catalasa , Compuestos de Nitrógeno , Sodio , Suelo , Sustancias Húmicas
11.
Water Sci Technol ; 89(7): 1630-1646, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38619894

RESUMEN

Due to the colloidal stability, the high compressibility and the high hydration of extracellular polymeric substances (EPS), it is difficult to efficiently dehydrate sludge. In order to enhance sludge dewatering, the process of ultrasonic (US) cracking, chitosan (CTS) re-flocculation and sludge-based biochar (SBB) skeleton adsorption of water-holding substances to regulate sludge dewaterability was proposed. Based on the response surface method, the prediction model of the specific resistance to filtration (SRF) and sludge cake moisture content (MC) was established. The US cracking time and the dosage of CTS and SBB were optimized. The results showed that the optimal parameters of the three were 5.08 s, 10.1 mg/g dry solids (DS) and 0.477 g/g DS, respectively. Meantime, the SRF and MC were 5.4125 × 1011 m/kg and 76.8123%, which significantly improved the sludge dewaterability. According to the variance analysis, it is found that the fitting degree of SRF and MC model is good, which also confirms that there is significant interaction and synergy between US, CTS and SBB, and the contribution of CTS and SBB is greater. Moreover, the process significantly improves the sludge's calorific value and makes its combustion more durable.


Asunto(s)
Quitosano , Aguas del Alcantarillado , Ultrasonido , Carbón Orgánico , Filtración , Agua , Eliminación de Residuos Líquidos/métodos
12.
Water Sci Technol ; 89(7): 1831-1845, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38619906

RESUMEN

In this study, further treatment of coking wastewater treated in anoxic-oxic-membrane bioreactor (A2O-MBR) was investigated to meet the standards of the ministry by means of nanofiltration (NF) (with two different membranes and different pressures), microfiltration -powder activated carbon (MF-PAC) hybrid system and NF-PAC (with two different membranes and five different PAC concentrations) hybrid system. In addition to the parameters determined by the ministry, other parameters such as ammonium, thiocyanate (SCN-), hydrogen cyanide (HCN), dissolved organic carbon (DOC), dissolved inorganic carbon (DIC), color were also examined to evaluate the flux performance and treatment efficiency of the hybrid processes. According to the results, chemical oxygen demand (COD) in the NF process, COD and total cyanide (T-CN) in the MF-PAC process could not meet the discharge standards. As for the NF-PAC hybrid system, XN45 membrane met the discharge standards in all parameters (COD = 96±1.88 mg/L, T-CN =<0,02 mg/L, phenol =<0.05 mg/L), with a recovery rate of 78% at 0.5 g/L PAC concentration.


Asunto(s)
Coque , Purificación del Agua , Aguas Residuales , Carbón Orgánico , Polvos , Purificación del Agua/métodos , Membranas Artificiales , Reactores Biológicos , Eliminación de Residuos Líquidos/métodos
13.
PLoS One ; 19(4): e0300387, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38635536

RESUMEN

Although biochar application to soils has been found to increase soil quality and crop yield, the biochar dispersion extent and its impacts on native soil organic carbon (SOC) has received relatively little attention. Here, the vertical and lateral migration of fine, intermediate and coarse-sized biochar (<0.5, 0.5-1 and 1-5 mm, respectively), applied at low and high doses (1.5-2 and 3-4% w/w, respectively), was tracked using stable isotope methods, along with its impact on native SOC stocks. Biochar was homogeneously mixed into the surface layer (0-7 cm depth) of a loamy sandy Acrisol in Zambia. After 4.5 y, 38-75% of the biochar carbon (BC) was lost from the applied layer and 4-25% was detected in lower soil layers (7-30 cm). Estimating BC mineralization to be no more than 8%, 25-60% was likely transported laterally out of the experimental plots. This conclusion was supported by observations of BC in the control plot and in soils up to 2 m outside of the experimental plots. These processes were likely progressive as recovery of BC in similar plots 1 year after application was greater in both surface and lower soil layers than after 4.5 y. Fine and intermediate-sized BC displayed the greatest downward migration (25.3 and 17.9%, respectively), particularly when applied at lower doses, suggesting its movement through soil inter-particle spaces. At higher dosages, fine and intermediate-sized particles may have clogged pore, so coarse biochar displayed the greatest downward migration when biochar was applied at higher doses. In the BC treatment plot soil profiles, native SOC stocks were reduced by 2.8 to 24.5% (18.4% on average), i.e. positive priming. However, some evidence suggested that the soils may switch to negative priming over time. The dispersion of biochar in soil should be considered when evaluating biochar's agronomic benefits and environmental effects.


Asunto(s)
Carbono , Suelo , Carbón Orgánico , Agricultura/métodos
14.
Bull Environ Contam Toxicol ; 112(4): 57, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38565676

RESUMEN

Both livestock-manure and livestock-manure-derived biochar have been used to remediate heavy metal-contaminated soil. However, direct comparisons of the heavy metal stabilization efficiency of livestock-manure and EQC-manure-biochar (derived from an equal quantity of corresponding livestock-manure) are limited. In the present study, the effect of livestock-manures and EQC-manure-biochars on soil properties and heavy metal bioavailability and leachability were compared using two contrasting soils (Ferralsols and Fluvisols). The results showed that both the livestock-manures and EQC-manure-biochars significantly changed soil pH, available phosphorus, available potassium, alkaline nitrogen and organic matter content (p < 0.05), but the trends were variable. In Ferralsols, the DTPA-extractable Cd and Zn decreased by -0.38%~5.70% and - 3.79%~9.98% with livestock-manure application and by -7.99%~7.23% and - 5.67%~7.17% with EQC-manure-biochars application. In Fluvisols, the DTPA-extractable Cd and Zn decreased by 13.39%~17.41% and - 45.26%~14.24% with livestock-manure application and by 10.76%~16.90% and - 36.38%~16.37% with EQC-manure-biochar application. Furthermore, the change in TCLP-extractable Cd and Zn in both soils was similar to that of DTPA-extractable Cd and Zn. Notably, the Cd and Zn stabilization efficiency of the EQC-manure-biochars was no better than that of the corresponding livestock-manures. These results suggest that the use of livestock-manure-derived biochar is not cost-effective for the remediation of heavy metal-contaminated soil.


Asunto(s)
Metales Pesados , Contaminantes del Suelo , Animales , Cadmio/química , Zinc , Estiércol , Ganado , Contaminantes del Suelo/análisis , Metales Pesados/análisis , Carbón Orgánico/química , Suelo/química , Ácido Pentético
15.
Bull Environ Contam Toxicol ; 112(4): 54, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38565781

RESUMEN

Contamination of aquatic and terrestrial environment with hexavalent chromium Cr(VI) is one of the major hazards worldwide due its carcinogenicity, persistency and immobility. Different research techniques have been adopted for Cr(VI) remediation present in terrestrial and aquatic media, while adsorption being the most advance, low cost, environmentally friendly and common method. The present study discussed the mechanisms of Parthenium hysterophorus derived biochar, iron-doped zinc oxide nanoparticles (nFe-ZnO) and Fe-ZnO modified biochar (Fe-ZnO@BC) involved in Cr(VI) mobility and bioavailability. Pot experiments were conducted to study the effect of Parthenium hysterophorus derived biochar, nFe-ZnO and Fe-ZnO@BC application rates (2%, 2 mg/kg, 10 mg/kg, respectively). The results indicated that the addition of soil amendments reduced Cr(VI) mobility. The findings revealed that the reduction in chromium mobility was observed by P. hysterophorus BC, and Fe-ZnO@BC but nFe-ZnO application significantly (p = 0.05) reduced Cr(VI) and CrT uptake as compared to the control treatments. The results of SEM coupled with EDS showed a high micropores and channel, smooth surface which helped in adsorption, and may enhance soil conditions. The concentration index (CI) by different amendments in trifolium plant was followed the descending order as: nFe-ZnO > Fe-ZnO@BC > P. hysterophorus BC after 30, 60 and 90 days of harvesting, respectively. In addition, human health risk index was found less than one (H1 < 1.0) in amended soils as compared to control treatments.


Asunto(s)
Compuestos Férricos , Trifolium , Contaminantes Químicos del Agua , Óxido de Zinc , Humanos , Zinc , Carbón Orgánico , Cromo , Hierro , Suelo , Adsorción
16.
S Afr Fam Pract (2004) ; 66(1): e1-e5, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38572878

RESUMEN

The impact of poisoning can differ significantly depending on the specific substance consumed. Identifying toxic substances in a patient is crucial to obtaining a thorough medical history. Frontline healthcare providers in the emergency department often handle patients presenting with poisoning. Their clinical presentation can vary depending on their dose, duration of exposure, and pre-existing medical conditions. Initially, poisoning management entails administering supportive care such as absorption and enhancing the elimination of poison with charcoal and antidote administration after identifying the poisoning substances. This article aims to provide a basic overview of the concepts involved in evaluating and managing these individuals.


Asunto(s)
Atención Ambulatoria , Centros de Control de Intoxicaciones , Humanos , Medicina Basada en la Evidencia , Antídotos/uso terapéutico , Carbón Orgánico/uso terapéutico
17.
Environ Monit Assess ; 196(5): 428, 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38573523

RESUMEN

Carbonaceous materials produced from agricultural waste (palm kernel shell) by pyrolysis can be a proper type of low-cost adsorbent for wide uses in radioactive effluent treatment. In this context, the as-produced bio-char (labeled as PBC) and its sub-driven sulfuric acid and zinc oxide activated carbons (labeled as PBC-SA, and PBC-Zn respectively) were employed as adsorbents for uranium sorption from aqueous solution. Various analytical techniques, including SEM (Scanning Electron Microscopy), EXD (X-ray Diffraction), BET (Brunauer-Emmett-Teller), FTIR (Fourier Transform Infrared Spectroscopy), and Zeta potential, provide insights into the material characteristics. Kinetic and isotherm investigations illuminated that the sorption process using the three sorbents is nicely fitted with Pseudo-second-order-kinetic and Langmuir isotherm models. The picked data display that the equilibrium time was 60 min, and the maximum sorption capacity was 9.89, 16.8, and 21.9 mg/g for PBC, PBC-SA, and PBC-Zn respectively, which reflects the highest affinity for zinc oxide, activated bio-char, among the three adsorbents, for uranium taking out from radioactive wastewater. Sorption thermodynamics declare that the sorption of U(VI) is an exothermic, spontaneous, and feasible process. About 92% of the uranium-loaded PBC-Zn sorbent was eluted using 1.0 M CH3COONa sodium ethanoate solution, and the sorbent demonstrated proper stability for 5 consecutive sorption/desorption cycles.


Asunto(s)
Uranio , Óxido de Zinc , Carbón Orgánico , Monitoreo del Ambiente , Termodinámica
18.
Sci Rep ; 14(1): 8420, 2024 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-38600155

RESUMEN

In recent years biochar (BC) has gained importance for its huge carbon (C) sequestration potential and positive effects on various soil functions. However, there is a paucity of information on the long-term impact of BC on the priming effect and nutrient availability in soil with different properties. This study investigates the effects of BC prepared from rice husk (RBC4, RBC6), sugarcane bagasse (SBC4, SBC6) and mustard stalk (MBC4, MBC6) at 400 and 600 °C on soil C priming and nitrogen (N), phosphorus (P), and potassium (K) availability in an Alfisol, Inceptisol, and Mollisol. BC properties were analyzed, and its decomposition in three soil orders was studied for 290 days in an incubation experiment. Post-incubation, available N, P, and K in soil were estimated. CO2 evolution from BC and soil alone was also studied to determine the direction of priming effect on native soil C. Increasing pyrolysis temperature enhanced pH and EC of most of the BC. The pyrolysis temperature did not show clear trend with respect to priming effect and nutrient availability across feedstock and soil type. MBC6 increased C mineralization in all the soil orders while RBC6 in Alfisol and SBC6 in both Inceptisol and Mollisol demonstrated high negative priming, making them potential amendments for preserving native soil C. Most of the BC showed negative priming of native SOC in long run (290 days) but all these BC enhanced the available N, P, and K in soil. SBC4 enhanced N availability in Alfisol and Inceptisol, RBC4 improved N and P availability in Mollisol and P in Alfisol and MBC6 increased K availability in all the soils. Thus, based on management goals, tailored BC or blending different BC can efficiently improve C sequestration and boost soil fertility.


Asunto(s)
Carbono , Saccharum , Carbono/análisis , Suelo/química , Celulosa , Carbón Orgánico/química , Nutrientes , India
19.
Sci Rep ; 14(1): 8493, 2024 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-38605135

RESUMEN

This study involved the production of 20 biochar samples derived from secondary medicinal residues of Snow Lotus Oral Liquid, processed within the temperature range of 200-600 °C. Additionally, four medicinal residues, including dissolved organic matter (DOM), from 24 samples obtained using the shaking method, served as the primary source material. The investigation focused on two key factors: the modifier and preparation temperature. These factors were examined to elucidate the spectral characteristics and chemical properties of the pharmaceutical residues, biochar, and DOM. To analyze the alterations in the spectral attributes of biochar and medicinal residues, we employed near-infrared spectroscopy (NIR) in conjunction with Fourier-infrared one-dimensional and two-dimensional correlation spectroscopy. These findings revealed that modifiers enhanced the aromaticity of biochar, and the influence of preparation temperature on biochar was diminished. This observation indicates the stability of the aromatic functional group structure. Comparative analysis indicated that Na2CO3 had a more pronounced structural effect on biochar, which is consistent with its adsorption properties. Furthermore, we utilized the fluorescence indices from UV-visible spectroscopy and excitation-emission-matrix spectra with the PARAFAC model to elucidate the characteristics of the fluorescence components in the DOM released from the samples. The results demonstrated that the DOM released from biochar primarily originated externally. Aromaticity reduction and increased decay will enhance the ability of the biochar to bind pollutants. Those results confirmed the link between the substantial increase in the adsorption performance of the high-temperature modified charcoal in the previous study and the structural changes in the biochar. We investigated the structural changes of biochar and derivative DOM in the presence of two perturbing factors, modifier and preparation temperature. Suitable modifiers were selected. Preparation for the study of adsorption properties of snow lotus medicinal residues.


Asunto(s)
Carbón Orgánico , Lotus , Carbón Orgánico/química , Materia Orgánica Disuelta , Temperatura , Espectrometría de Fluorescencia/métodos , Sustancias Húmicas/análisis
20.
Nat Commun ; 15(1): 3218, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38622151

RESUMEN

Flash Joule heating (FJH) is an emerging and profitable technology for converting inexhaustible biomass into flash graphene (FG). However, it is challenging to produce biomass FG continuously due to the lack of an integrated device. Furthermore, the high-carbon footprint induced by both excessive energy allocation for massive pyrolytic volatiles release and carbon black utilization in alternating current-FJH (AC-FJH) reaction exacerbates this challenge. Here, we create an integrated automatic system with energy requirement-oriented allocation to achieve continuous biomass FG production with a much lower carbon footprint. The programmable logic controller flexibly coordinated the FJH modular components to realize the turnover of biomass FG production. Furthermore, we propose pyrolysis-FJH nexus to achieve biomass FG production. Initially, we utilize pyrolysis to release biomass pyrolytic volatiles, and subsequently carry out the FJH reaction to focus on optimizing the FG structure. Importantly, biochar with appropriate resistance is self-sufficient to initiate the FJH reaction. Accordingly, the medium-temperature biochar-based FG production without carbon black utilization exhibited low carbon emission (1.9 g CO2-eq g-1 graphene), equivalent to a reduction of up to ~86.1% compared to biomass-based FG production. Undoubtedly, this integrated automatic system assisted by pyrolysis-FJH nexus can facilitate biomass FG into a broad spectrum of applications.


Asunto(s)
Carbono , Carbón Orgánico , Grafito , Biomasa , Hollín
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...